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Remarks on the 20-vertex model 

K Y Lint 
Institute for Theoretical Physics, University of Heidelberg, Heidelberg, West Germany 

Received 13 October 1977 

Abstract. A special case of the 20-vertex model on a triangular lattice is solved exactly for 
all temperatures by the method of Bethe ansafz. The model exhibits no phase transition. 

1. Introduction 

The 20-vertex model on a triangular lattice is an extension of the ice-rule vertex 
models on square lattice and Kagomt lattice (Lieb and Wu 1972) such that it retains 
the ice condition. It can be shown that the ice-rule vertex model on a Kagomt lattice 
is equivalent to a special case of the 20-vertex model (Lin 1976). Baxter (1969) has 
studied a rotationally-invariant 20-vertex model. Kelland (1974a, b) generalised the 
result of Baxter and he found that the 20-vertex model can be solved exactly by the 
method of Bethe ansatz if certain conditions among the Boltzmann weights (vertex 
weights) are satisfied. Unfortunately these conditions are in general temperature 
dependentS. The 20-vertex model can be solved exactly by the Pfaffian method 
(Sacco and Wu 1975) if the Boltzmann weights satisfy certain free-fermion conditions 
which are again temperature dependent in general. In this paper we solve a special 
case of the 20-vertex model for all temperatures by the method of Bethe ansafz. Our 
model is not a special case of Kelland’s model, nor is it, as formulated, a special case of 
the model of Sacco and Wu. 

2. Definition of the model 

Place arrows on the bonds of a triangular lattice so that there are three entering and 
three leaving each vertex. There are twenty possible vertex configurations. If the 
configurations with all arrows reversed are identified then we have ten distinct 
configurations as shown in figure 1. The vertices are associated with the energies ei. 
The partition function is 

Z = 1 (n w ?) (1) 
where wi = exp(-ei/kT) are the Boltzmann weights (vertex weights), k is the Boltz- 
mann constant, T is the temperature, ni is the number of vertices with energy ei, and 
the summation is extended to all allowed arrow configurations. 
t Alexander von Humboldt Foundation Fellow. On leave from Tsing Hua University, Taiwan, Republic of 
China. 
t A special case where these conditions hold at all temperatures was given by Kelland (1974a). In this case 
the free energy can be expressed in terms of elementary functions (Lin and Wang 1977). 
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e7 e0 e ,  e1 0 

Figure 1. Ten reversal-symmetric vertex configurations and their associated energies. 

The partition function possesses some symmetry relations. We write 

Z=Z(l ,  2, 3,4,5,6,7, 8,9, 10) ( 2 )  
where i denotes wi. Rotations of the lattice by 60" and 120" lead to 

2 = 2 ( 2 , 9 , 6 ,  8,4, 10,7,3, 1,5)=2(9, 1, 10, 3, 8,5,7,6, 2,4). (3) 

Reflection symmetry implies 

2 = 2 ( 2 ,  1,6,5,4,3,7,10,9,8). (4 ) 
In this paper, we shall consider the following special case: 

w 1  = w 2  = w 3  = w4 = o = exp(-c/kT) 

w s  = w6 = w7 = wa = U '  = exp(-c'/kT) 

wg = w1rJ = 0. 

( 5 )  

3. The transfer matrix 

Consider a triangular lattice of M rows and each row has N vertices with cyclic 
boundary conditions as shown in figure 2. We regard the lower (upper) row of 
non-horizontal bonds as the incoming (outgoing) row. The number n of down arrows 
in each row is conserved (Baxter 1969) and the transfer matrix is a block diagonal 
matrix with one block for each value of n = 0,1, . , . , 2N .  The free energy per vertex 
is 

1 1 
F = - k T  M.N+m lim - I n Z = - k T  MN N+m lim N -1nA (8) 

1 2 3  c 2N-1 2 N  

Figure 2. Labelling of the bonds of a triangular lattice. 
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where A is the largest eigenvalue of the transfer matrix. The positions of the down 
arrows in a row are denoted by X = {xl, . . , , x , }  and the element of the eigenvector is 
denoted by f ( X )  as usual (Lieb and Wu 1972). 

In the general case, the transfer matrix is very complicated. It is interesting to note 
that if 0 9  = wl0 = 0 then each block matrix (for a given n) is reducible?. To be precise, 
let us denote by m the number of vertices where two down arrows point out at the 
same vertex in the lower row. The condition w9 = w10 = 0 ensures that if m has a 
certain value in a particular row R ,  then it cannot be larger than this value in all rows 
above R .  If cyclic boundary conditions are used, then it follows that we need to 
consider only the subspace with definite values of n and m (2m d n). 

4. The Bethe ansatz 

We now apply the Bethe ansatz to solve the model with vertex weights given by 
equation (5 ) .  The largest eigenvalue in the subspace of n and m is denoted by 
A(n, m). It is easy to check that A(n, m )  = A(n - 2m, 0) and therefore we only need to 
consider the case m = 0. The transfer matrix equation is 

X h '  

where 

X if x is even 
if x is odd. 

x '  = 

It follows from equation ( 7 )  that 

1, -1 

fbl, . * . , x , > = f ( A  . * . , x 3  
We use the convention 

f ( x ; , x ; ,  . . . ,  x ~ ) = f ( x ; ,  . . . ,  x I , 2 N + x ; ) .  

Equation (7) can now be rewritten in the form 
x i - 1  x i - 1  x;-12N+x;-1 

Af(x'1 , .  . . , x k ) = w N - "  0 '" c c ' e .  c c f (Y '1 , .  
x i  x i  Xh-1 x:, 

We try the Bethe ansatz 
I "  

where the sum is over all permutations P = {P(1), P ( 2 ) ,  . . . , P ( n ) }  of the n integers 
1 , 2 ,  . . . , n. It is straightforward to show that 

- v 7T 
f-, *3 -, . 

2N 2N 

0, *-, * 2 - ,  , 
7T 7T 

N N  

t A square matrix is called reducible if there is a permutation of indices which reduces it to the form [^, i] 
where A and B are square matrices. 



1350 K YLin 

A ( P )  = in'/' sgn(P) (13)  

(14) 

-1 

w ~ - ~ w ' " ~  (!sin Ikil) 

wN-"w'"4 (y sin Ik,I)-' 

if n is even 

if n is odd 1 A(n, 0) = 

where sgn(P) is the signature of the permutation, and II' means that we exclude k j  = 0. 
We have ( O a r G l )  

1 
lim - In A(n, 0) g ( r ) =  n,N-rm N 

r=n/N=cons tant  

I wr € € ' - E  
- - r - -?  In sin 8 de. 

k T  k T  T 0 

For E' < e g ( r )  is a monotonically increasing function of r and the free energy is given 
by 

F = - kTg( l )=  E ' -  k T  In 2 if € ' < E .  (16)  
For E' > E we have 

and 
2 i.rrr(T) 

F = e + r (  T)(E '  - E ) +  - k T  In sin e d e  if E ' > €  (18) 
T I ,  

where r (T )  is the solution of equation (17). 

energy is independent of E .  This result can be generalised and we have 
Equation (16)  implies that for E' < e, the system is in a 'frozen' state and the free 

F = -kT  In 2 -k E' 

if 

e9 = elo = m, E' = e5 = e6 = e7 = es a min{el, e2,  e3,  e4}. (19) 

(20) 

To see this, notice that 

2 = (n W ? ) S Z  - = (n cj P) if wi s cji for all i 

and therefore we have 

Z S Z G Z  (21) 
where 

Zi ( i  4) = min{el, e2, e3, e4} = emin 

&(ia4)=max{e1,e2,e3, e4} 

if i > 4. - =  e .  = e .  = e .  
, I ,  

It follows from inequalities (21) that z = Z = 2 if e9 = elo = CO and e5 = e6 = e7 = es 
5 emin. 
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Our model can be shown to be in some sense equivalent to a special case of Sacco 
and Wu (1975)T. Regard their bonds as down- or left-pointing arrows. If m = 0, then 
their configurations 70, 714,  Tis, f16 do not occur, so these weights can be set equal to 
zero. Their Pfaffian conditions (16)  and (17) are then satisfied and 

All other fii and f i i  are zero. Their D(c9, 4 )  in equation (20) is then given by 

D(e, 4 ) =  lei’ -ei(e+’)+2(w’/w)/2. (23)  
The free energy is therefore given by their equation (20), i.e. 

ln(2w’ + 2w cos (Y eip)  d a  d p  

where a + p  = 4 and p -a  + 7~ = c9 + 4. This is rather an elegant formula, true 
whether E ’ > €  or E ’ < E .  Equations (16)  and (18) can be obtained from the above 
formula by performing the p-integration. Note that equation ( 1 3 )  implies that 
expression ( 1 1 )  is a determinent, and this is the typical result obtained by applying the 
Bethe ansatz to a problem which can be solved combinatorially by Pfaffians. 

5. Conclusion 

We have solved exactly a special case of the 20-vertex model on a triangular lattice for 
all temperatures by the method of Bethe ansafz. For E > E ’  the system is in a frozen 
state for all temperatures while for E < E ’  the model exhibits no phase transition. 

The fact that the maximal value of A(n, 0) occurs for 0 < r < 1 when E ‘  > E implies 
that our model has a spontaneous partial polarisation. To see this, let us define the 
vertical polarisation by 

P = (number of up arrows - number of down arrows)/2N 

If m = 0, P is equal to 1 - r  which is positive. In general for n S N / 2  we have 
P = l - r - 2 m / N a O  where l - r > 2 m / N a O  and r < n / N S $ .  On the other hand, 
the model is unchanged by reversing all the arrows, therefore our model has a 
spontaneous polarisation such that /PI S 1 - r. 
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t I thank the referee for pointing this out to me 


